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Abstract: Authors explored the potential use of Vis/NIR hyperspectral imaging (HSI) and 

Fourier-transform Near-Infrared (FT-NIR) spectroscopy to be used as in-line tools for the 

detection of unsound chestnut fruits (i.e. infected and/or infested) in comparison with the 

traditional sorting technique. For the intended purpose, a total of 720 raw fruits were 

collected from a local company. Chestnut fruits were preliminarily classified into sound 

(360 fruits) and unsound (360 fruits) batches using a proprietary floating system at the 

facility along with manual selection performed by expert workers. The two batches were 

stored at 4 ± 1 °C until use. Samples were left at ambient temperature for at least 12 h before 

measurements. Subsequently, fruits were subjected to non-destructive measurements (i.e. 

spectral analysis) immediately followed by destructive analyses (i.e. microbiological and 

entomological assays). Classification models were trained using the Partial Least Squares 

Discriminant Analysis (PLS-DA) by pairing the spectrum of each fruit with the categorical 

information obtained from its destructive assay (i.e., sound, Y = 0; unsound, Y = 1). 

Categorical data were also used to evaluate the classification performance of the traditional 

sorting method. The performance of each PLS-DA model was evaluated in terms of false 

positive error (FP), false negative error (FN) and total error (TE) rates. The best result (8% 

FP, 14% FN, 11% TE) was obtained using Savitzky-Golay first derivative with a 5-points 

window of smoothing on the dataset of raw reflectance spectra scanned from the hilum side 

of fruit using the Vis/NIR HSI setup. This model showed similarity in terms of False 

Negative error rate with the best one computed using data from the FT-NIR setup (i.e. 15% 

FN), which, however, had the lowest global performance (17% TE) due to the highest False 

Positive error rate (19%). Finally, considering that the total error rate committed by the 

traditional sorting system was about 14.5% with a tendency of misclassifying unsound 

fruits, the results indicate the feasibility of a rapid, in-line detection system based on 

spectroscopic measurements. 

Keywords: Castanea sativa Mill.; healthy; unhealthy; hyperspectral imaging; discriminant 

analysis; NIR spectroscopy. 
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1. Introduction 

Although chestnut supply chain is a niche sector at national level, Italy is the fourth 

largest producer of chestnuts in the world with around 53,000 Mg (FAOSTAT, 2020) and 

the largest exporter in terms of product value, followed by China. At present, the chestnut 

supply chain shows a modest technological level which, historically, has never been a 

problem to ensure a product marketable in terms of food safety and quality. However, in the 

last 15-20 years, supply chain’s technology has failed to counteract the effects of climate 

change and the proliferation of native and non-native pathogens, which have significantly 

reduced the production and increased the incidence of hidden defects in the product. The 

consequences were catastrophic with the chestnut sector loosing important market share 

overtime with product losses up to 90% in some production seasons (e.g. 2016). Among the 

issues concerning the sustainability of chestnut farming in Italy, the most significant are the 

health and marketability of the fruit which are compromised by impact damage and diseases 

caused by insects and fungal pathogens. These are responsible for (i) hidden damages and 

(ii)  mycotoxin contamination due to which chestnut fruit is considered as an at-risk product 

(Rodrigues et al., 2012). The fungal species generally responsible for developing rot or mold 

are Penicillium spp., Aspergillus spp., Fusarium spp., Gnomoniopsis castanea Tamietti, 

Phomopsis castanea Sacc. Petr., Acrospeira mirabilis Berk. & Broome e Sclerotinia 

pseudotuberosa Rehm. (González et al., 2010). Fungal infection usually develops from 

flicker holes, larval tunnels and splits, as well as during the storage of fruits that are not 

properly dried after the washing and/or flotation process. Among the fungal parasites, 

Gnomoniopsis castanea Tamietti predominantly raises concerns considering the extent of the 

damage it causes. Most fungal contaminations are related to primary infestation of 

entomological nature. The major chestnut parasitic insects are tortrices (Cydia splendana 

Hb., Cydia fagiglandana Zel. e Pammene fasciana L.) and weevils (Curculio elephas Gyll.) 

(Paparatti and Speranza, 2005). The larva develops in the fruit and feeds on the amylaceous 

substratum of flesh. Upon completion of the larval stage (30–45 days) the insect exits from 

fruit and drops to the ground, leaving a hole of approximately 1-mm diameter. Although 

damage increases with the development of the larvae, even a very small attack may 

compromise the quality of the fruit. The exit hole provides external evidence of a previous 

infestation and therefore suggests internal damage.  

Under existing production practices, the most widespread method for detecting unsound 

chestnuts involves floating, frequently combined with thermo-hydrotherapy (Sieber et al., 

2007), followed by manual sorting. However, the traditional method is unreliable because it 

tends to discard excessive amount of sound product. Moreover, manual sorting is time-

consuming, subjective, labour intensive and does not identify chestnuts with hidden damage. 

Consequently, the development of rapid, automatic and non-destructive techniques for 

chestnut sorting would be beneficial to food industry by reducing incidence of defective 

products, which are responsible for serious damage to brand reputation. 

A variety of techniques have been reported for non-destructive selection of fruit and 

vegetables, including those based on electrical properties: near-infrared (NIR) spectroscopy 

(Saranwong et al., 2011), sound/noise/vibration (Liljedahl and Abbott, 1994), ultrasound, 

nuclear magnetic resonance (Zhang and McCarthy, 2013), X-ray (Haff and Toyofuku, 2008) 
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and X-ray computed tomography imaging (Donis-González et al., 2014) and others (Nicolaï 

et al., 2007; Singh et al., 2010; Wang et al., 2010). Among these non-destructive techniques, 

NIR spectroscopy presents several advantages including minimal need for sample 

preparation and a wide range of applications in the food sector. In addition, it is fast, 

environmental friendly, easy to apply and highly suited for rapid on-line inspection (Pasquini, 

2003; Wang et al., 2010). Its efficacy in detecting and classifying fungal infections has been 

demonstrated on food products such as soybeans (Wang et al., 2004) and dates (Teena et al., 

2014). Moreover, NIR spectroscopy was proved to be effective for the detection of insects or 

insect damage in various food commodities: e.g., blueberry (Peshlov et al., 2009), cherry 

(Xing and Guyer, 2008; Xing et al., 2008), fig (Burks et al., 2000), flour (Wilkin et al., 1986), 

green soybean (Sirisomboon et al., 2009), jujube (Wang et al., 2011), wheat (Baker et al., 

1999), seeds of Picea abies L. (Tigabu et al., 2004) and seeds of Cordia africana Lam. 

(Tigabu and Odén, 2002). Insects and larvae can be detected directly due to their 

haemolymph, lipids and/or chitin content (Rajendran, 2005; Moscetti et al., 2014a) or 

indirectly due to subsequent damages such as internal browning or darkening, dehydration 

or fungal contamination (Wang et al., 2011). The efficiency of NIR spectroscopy to identify 

insect damage or infestation depends on the type of spectroscopic measurement 

(transmittance, reflectance and interactance) (Wang et al., 2010; Wang et al., 2011). Most 

NIR spectroscopy applications described in the literature are based on spot measurements. 

Moreover, NIR spectrophotometers are conveniently classified according to the type of 

monochromator which may affect the speed and quality of measurements. Specifically, 

Fourier Transform (FT) spectrophotometers use an interferometer in order to generate 

modulated light in which the time domain signal of the light reflected or transmitted by the 

sample onto the detector can be converted into a spectrum via a fast Fourier transform 

(Nicolaï et al., 2007). Various authors have observed radial and circumferential quantitative 

variations of certain quality parameters in different fruits (Peiris et al., 1999) such as kiwi 

(Martinsen and Schaare, 1998) and melons (Long and Walsh, 2006). This has an impact on 

the application of single point spectroscopy for fruit and vegetables analysis. In fact, 

depending on the heterogeneity of the analysed chemical parameter, different values can be 

obtained depending on where the acquisition was made. Therefore, it might be necessary to 

perform the spectral acquisition at several positions on the same fruit or vegetable, which 

may result inefficient when, for example, skin disorders are to be detected. In such cases 

hyperspectral imaging (HSI) is suggested; in fact, through the concurrent acquisition of the 

spatial and spectral domains in a 3-D matrix (or hypercube), HSI provides spectral 

information at pixel level from the whole surface of the sample. In both NIR and HSI, data 

handling is almost always required and represents a crucial step before analysis (Wu and Sun, 

2013). Nicolaï et al. (2007), Burger and Gowen (2011) give exhaustive overviews of the most 

common chemometric methods that are useful in dealing with issues related to data handling 

of conventional NIR dataset and hypercube, which are usually affected by a “curse of 

dimensionality”. The hypercube is a complex data structure characterized by both spatial and 

spectral domains as well as signal noise and high-correlated features. Thus, HSI data needs 

to be carefully handled in order to enhance and discard important and useless information 
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respectively, and consequently reduce requirements in computational load. Finally, proper 

data handling in HSI is essential for successful implementation in on-line or in-field systems. 

The objective of the present study was to demonstrate the feasibility of using both 

conventional and imaging NIR spectroscopy for the detection of unsound chestnuts, 

exploring their potential to be fitted, or retrofitted, into wide range of sorting systems. 

2. Materials and Methods  

2.1. Samples preparation 

Two batches of sound (S) and unsound (U) chestnut fruits of approximately 5 kg each 

(Castanea sativa Mill. Cv. Marrone Fiorentino), harvested in October 2018, were sampled 

from a local storage facility (Mastrogregori s.r.l., Viterbo, Italia) and sorted through the 

traditional method (i.e. floating followed by manual sorting). The batch S (sound) 

corresponded to the chestnuts sorted as healthy fruits, while the batch U (unsound) to 

chestnuts sorted as infested/infected fruits. The batches were transferred to the laboratory, 

and further selected to remove impact-damaged and/or germinated chestnuts and stored at 4 

± 1 °C until further analyses. A total of 720 fruits were selected (360 per batch, S and U) for 

the analyses and each fruit was labelled with a unique ID. Prior to the spectrophotometric 

analysis, samples were left at room temperature for at least 12 h. 

2.2. Spectral measurements (i.e., non-destructive assays) 

2.2.1. Vis/NIR hyperspectral imaging 

The hyperspectral scans were performed using the hyperspectral camera (mod. PFD4K-

CL-65-V10E, 400-1000 nm, ~0.78 nm resolution) equipped with a lens mod. OLE23 with 

focal length 23 cm and number F 2.4 (Specim Spectral Imaging Ltd., Oulu, Finland). The 

distance between the camera and the samples was 30 cm while, the lighting source consisted 

of 6 halogen lamps of 35W (mod. DECOSTAR 51 ALU 41866 WFL, Osram, Munich, 

Germany). The Lumo Scanner 1.2 software (Specim Spectral Imaging Ltd., Oulu, Finland) 

was used for the control of the camera and transition stage (mod. Labscan 40×20, Specim 

Spectral Imaging Ltd., Oulu, Finland). The scanning speed was set to 3.24 mm s-1 with an 

exposure time of 35 ms. The hypercubes were acquired in reflectance at a resolution of 

1788×1568 pixels (H×W). Before each scan, dark and white references were acquired for the 

calibration. The dark reference (0% of reflectance) was acquired with the camera shutter 

closed, while the white reference consisted of the scan of a 70-%-reflective Teflon standard. 

The relative hyperspectral image (I) was obtained by applying the following equation (Eq. 1) 

(ElMasry, Wang and Vigneault, 2009): 

(1) I = 
I₀-D

W-D
⨯100 

where I0 is the hyperspectral raw image, W is the white reference and D is the dark reference. 

The calibration is used to transform the reflectance value of each pixel of the raw 

hyperspectral image (I0) into relative reflectance values (I, unitless measurement). This 
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allows to compare hyperspectral images resulting from different samples and the spectra with 

those contained in the spectral libraries. 

Each scan was performed on eight samples at a time, which were scanned on four sides: 

(i) convex side, C; (ii) flat side, P; (iii) hilum side, B and (iv) torch side, T (Fig. 1). 

Subsequently, the raw hypercube of each fruit was (i) clipped from the raw scan (Fig. 2), (ii) 

calibrated using the eq. 1, and (iii) segmented for removing the background and the edges in 

each HSI image. The resulting Region Of Interest (ROI, Fig. 3) was used to measure the 

mean reflectance spectrum of each chestnut fruit. A matrix of 720 samples (i.e. 360 sound 

and 360 unsound fruits) × 776 wavebands (i.e. 400-1000-nm sensitivity, ~0.78-nm 

resolution) was acquired for each chestnut side. The flow chart of the procedure described 

above is shown in Figure 4. Matlab R2017b software was used to remove background from 

hypercubes (Mathworks Inc., Natick, USA). 

 

Figure 1. Overview of the four sides of hyperspectral image acquisition. 
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Figure 2: Clippings of the raw HSI scans of the four sides of sample. 

 

Figure 3. Region of interest (ROI) for the four scanned sides of sample; the background 

is in dark blue color. 

 

Figure 4. Flowchart of the main steps involved in the process of hyperspectral image 

analysis. 

2.2.2. FT-NIR spectroscopy 

The Antaris II spectrophotometer (Thermo Scientific, Madison, WI, USA) was used for 

acquisition of Fourier’s transformed spectra in the 1000-2500 nm spectral region with a 



Italus Hortus (2020), 27(1), pp. 3-18 

9 

 

resolution of 0.3 nm. The spectra were acquired in absorbance, using internal standard of the 

instrument as a reference. Each spectrum was an average of 30 scans and was acquired only 

on the flat side of the fruit (P). The dimensions of the resulting spectral matrix in terms of 

number of rows and number of columns (M×N) was equal to 720×5001. 

2.3. Microbiological and entomological measurements (i.e., destructive assays) 

Immediately after the non-destructive analysis, each fruit was longitudinally dissected 

into two halves using a sterilized scalpel. Sections were analysed for the identification of 

damage from fungal parasites and/or insects. As the first step, a pulp fragment was inoculated 

into a petri dish containing Potato-Destrose Agar (PDA) as growth medium, added with 

antibiotics (i.e. ampicillin and streptomycin). The plate was then incubated at 25 ± 1 °C for 

7 days and the fungal pathogens were identified. As the second step, the dissected fruit was 

visually evaluated to identify and classify the species of insects responsible for any damage. 

Each fruit was reclassified into sound (Y = 0) and unsound (Y = 1) as per the procedure 

outlined in the flow chart (Fig. 5). The Y vector was used as binary-class vector for the 

supervised learning of classification algorithm. 

 

Figure 5. Flowchart outlining the reclassification of fruits 

based on entomological and microbiological analyses. 
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2.4. Chemometrics 

2.4.1. Data handling and spectral pre-treatments 

Matlab R2017b software with PLS_Toolbox v8.5.6 software (Eigenvector Research Inc., 

WA, USA) was used for data handling and model computing. Chemometrics was performed 

following a combination of spectral pre-treatments, including: Standard Normal Variate 

(SNV), Multiplicative Scatter Correction (MSC), Savitzky-Golay first and second derivatives 

(D1f and D2f, respectively) with a second or third order polynomial fitted over a window of 

five (S5), seven (S7), nine (S9) or eleven (S11) features (Savitzky and Golay, 1964; 

Boysworth and Booksh, 2008) and Mean Centering (MC). Every possible combination of 

pre-processing was also tested and only best results, in terms of model performances, were 

retained. 

2.4.2. Classification models 

Classification models were computed using Partial Least Squares Discriminant Analysis 

(PLS-DA) using the SIMPLS algorithm (de Jong, 1993). PLS-DA, a variant of PLS, was 

used for research of useful linear combinations between independent variables, with the aim 

of obtaining a more stable regression, by discarding the most irrelevant and unstable 

information which allowed to resolve any problem of collinearity. This was chosen because 

the Y variable was categorical. In fact, the classes identified by destructive analysis (sound 

as S and unsound as U) were used as response variable (Y) in the development of PLS-DA 

models where predictive variables (X) were represented by the spectral profiles of each 

chestnut fruit. The optimal number of latent variables (LVs) was selected as described by 

Moscetti et al. (2017, 2018). The classification performance of PLS-DA models was 

determined in terms of False Positive rate or First Type Error (FP – Eq. 2), False Negative 

rate or second-type error (FN – Eq. 3) and Total Error rate (TE - Eq. 4) and reported for both 

calibration (C) and cross-validation (CV) procedures (Fawcett, 2006): 

(2) False Positive rate (FP) = 
False positive

False positive + True negative
= 1 - specificity 

(3) False Negative rate (FN) = 
False negative

False negative + True positive
= 1 - sensitivity 

(4) Total Error rate (TE) = 
False positive + False negative

Total Positive + Total Negative
 = 1 - accuracy 

wherein, True Positive (TP) corresponds to the number of sound samples correctly classified 

as sound; True Negative (TN), the number of unsound samples correctly classified as 

unsound; False Negative (FN), the number of sound samples incorrectly classified as 

unsound; and False Positive (FP), the number of unsound samples incorrectly classified as 

sound. A test with a low False Negative rate rarely classifies a sample as unsound even 

though there is no damage. The sound class sensitivity takes values between 0 and 1 and 

describes the model ability to correctly recognize samples belonging to that class; conversely, 

a test with a low False Positive rate rarely classifies as positive an unsound sample. Also, the 

sound class specificity takes values between 0 and 1 and describes the model ability to reject 
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samples of all other classes. A perfect predictor would be described as 100% sensitive, which 

means that all sound samples are correctly identified as sound, and 100% specific, that no 

unsound sample is wrongly identified as sound. The Total Error rate (TE) of a binary model 

is calculated as the arithmetic mean of the FP and FN error rates. TE was used to select 

models in terms of predictability, while a venetian blinds cross-validation with 10 splits was 

used to select the proper number of LVs and to evaluate each model in terms of robustness 

(i.e. the model ability to withstand small variations in the operative conditions of test) 

(Ballabio and Consonni, 2013). The cross-validation method was preferred because of its 

capability of providing a better representation when the dataset contains many samples 

(Wise, 2009). The outliers’ analysis was not carried out. 

3. Results 

3.1. Spectral measurements (i.e., non-destructive assays) – an overview 

3.1.1. Vis/NIR hyperspectral imaging 

HSI technology allowed to acquire spectra that can be divided into two ranges: the visible 

band (Vis) from 400 nm to 780 nm, and the near infrared band (NIR) from 780 nm to 1000 

nm. Figure 6 shows the reflectance spectra acquired for the four sides of the fruit using the 

Vis/NIR hyperspectral camera. Bearing in mind that a “by eye” evaluation of spectral data 

may lead to misleading conclusions, the average spectra apparently showed the evidence of 

spectral differences between sound and unsound fruits using HSI. 

 
 

Figure 6. Vis/NIR averaged spectra (i.e. from 400 to 1000 nm) of sound and unsound 

chestnuts acquired with hyperspectral camera on (a) hilum, (b) convex, (c) flat and (d) 

torch side of fruit. 
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3.1.2. FT-NIR spectroscopy 

Figure 7 shows both sound and unsound average raw spectra acquired with the FT-NIR 

Antaris II spectrophotometer. The spectra showed higher absorbance in infested fruits. This 

is confirmed by Moscetti et al. (2014a) and might be explained with a decrease in reflectance 

due to the majority of the light beam absorbed by the infested tissue, as pointed out by Wang 

et al. (2011). 

 

Figure 7. NIR averaged spectra (i.e., from 1000 to 2500 nm) of sound and unsound chestnuts 

acquired with FT-NIR spectrophotometer on the flat side (P) of fruit. 

3.2. Microbiological and entomological measurements (i.e., destructive assays) 

Based on the results obtained from various surveys performed in different production 

seasons in central Italy (Viterbo), the total error rate of the traditional sorting operations 

(flotation and/or manual sorting) may vary considerably from 15 to 20%. Data collected 

during the 2018 season showed a first type error (or False Positive, FP) equal to 16.1%, which 

outweighs over the second type error (or False Negative, FN) of 12.5%. Therefore, the total 

error of classification (TE) committed by the industry was about 14.5%, with a tendency of 

misclassifying unsound fruits. These results were in accordance with those observed by 

(Moscetti et al., 2014a; 2014b) in the 2012 production season. 

3.3. Classification models 

Performance metrics of each PLS-DA model were obtained using the class labels from 

destructive analysis as response variable (Y) and the average spectrum of each chestnut fruit 

as predictive variable (X) as shown in Tab. 1. 

The best fitting models were all obtained without any pre-treatment of optical dispersion 

removal (or scattering). FT-NIR data was successfully pre-treated by applying a Savitzky-

Golay filter with a 5-points smoothing window followed by the Mean Centering, while 

Vis/NIR HSI data required a first derivative Savitzky-Golay filter with a 5-points smoothing 

window and a subsequent Mean Centering. 
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Table 1. Performance of PLS-DA models for chestnut sorting. 

Instrumentation 
Scanning 

side 

Spectral pre-treatment 
LVs 

FP  FN  TE 

Scatt. 

C. 
SG Der. Norm. C CV  C CV  C CV 

               

FT-NIR P - 15 - MC 13 0.19 0.19  0.14 0.15  0.16 0.17 

               

HSI (Vis/NIR) B - 5 1st MC 14 0.07 0.08  0.14 0.14  0.10 0.11 

 C - 5 1st MC 13 0.07 0.08  0.15 0.15  0.11 0.12 

 P - 5 1st MC 13 0.07 0.09  0.14 0.14  0.11 0.11 

 T - 5 1st MC 11 0.07 0.08  0.14 0.15  0.10 0.11 

               

Scatt. C., scatter correction; SG, Savitzky-Golay filter; Der., derivative; Norm, normalization (or mean centering); FP, false 

positive; FN, false negative; TE, total error; C, calibration; CV, cross-validation; P, flat side; B, hilum side; C, convex side; 

T, torch side 

4. Discussion 

The spectral analysis in the visible range (i.e., ~400-780 nm) is extremely useful for the 

quanti-qualitative assessment of pigments. In this spectral region, colour differences between 

samples are mainly described. Whereas, the ~780-2500-nm spectral band corresponds to the 

NIR region, which is particularly suitable for the analysis of chemical compounds (Polesello 

et al., 1981). In fact, NIR bands are mostly represented by overtones containing information 

about various molecular vibrations and functional groups, e.g. C-H, N-H, O-H, etc. (Polesello 

et al., 1981). Therefore, classification models based on the Vis/NIR spectral range are mainly 

colour oriented, while discriminant algorithms computed using NIR wavelengths are trained 

only for chemical pattern recognition. Bearing in mind that the FT-NIR and the Vis/NIR HSI 

setups used in the experimentation are part of different technical and technological 

paradigms, the previous assumption allows to speculate that one of the most significant 

reasons behind the difference in model performances between the two setups is the spectral 

range in which models were trained. Thus, NIR-based models were affected by the major 

constituents of sample. Raw chestnuts are mainly composed by water (∼48.5%), 

carbohydrates (∼45.5%), fibers (∼8.0%), proteins (∼2.5%), and lipids (∼2.0%) (USDA, 

2019). The water molecule has very significant NIR spectral bands, which show overtones at 

760, 970, 1180, and 1450 nm and a combination at 1940 nm (Polesello et al., 1981). 

Considering that larvae metabolic activity and mould development may be responsible for 

changes in temperature and moisture content of chestnut (Rajendran, 2005), the performance 

of NIR-based classification models may be affected by the fruit health. 

The spectral pre-treatments selection also highlighted that different approaches were 

needed from an instrument to another to improve spectral quality and then the final model 

performance. The only exception was the recourse to the scattering correction algorithm, 

which was not required for the treatment of spectra from both setups. In fact, light scattering 

is a physical characteristic of sample, and its correction is not frequently needed for the 

achievement of classification tasks, especially when light scattering significantly contributes 

to the between-variance classes. The baseline correction through the first derivative was 

fundamental only for HSI data, while, as expected, the Savitzky-Golay smoothing window 

size was larger for FT-NIR data, because of its highest spectral resolution. Finally, mean 
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centering was effective in improving classification in all cases. The effectiveness of spectral 

pre-treatments was in agreement with what was previously reported by Moscetti et al. 

(2014a). 

In general, PLS-DA models developed from Vis/NIR HSI data had a higher effectiveness 

in product sorting than the FT-NIR-based model. Specifically, the best HSI model was 

obtained through the scan of the hilum-scar side of fruit, as previously observed by Moscetti 

et al. (2014a) and Moscetti et al. (2014b), with a total error rate equal to 10% and 11% in 

calibration and cross-validation, respectively. On the other hand, FT-NIR performed worse 

with a total error rate of 15% and 16% in calibration and cross-validation, respectively, due 

to the highest FP error rate (~19%). However, it should be specified that the technical 

characteristics of the Antaris II instrument allowed to scan the fruit on all four sides. 

Therefore, further investigation will be necessary before confirming a superior technology in 

terms of detection performance of chestnut fruit affected by hidden damage. 

Finally, results represent an improvement over the conventional sorting system, which 

usually has a total error rate of ~15-20%. Nevertheless, all the models performed slightly 

worse than those reported by Moscetti et al. (2014a and 2014b) using spectra acquired from 

an Acousto-Optic-Tunable-Filter (AOTF) NIR spectrophotometer. For these reasons, further 

tests will be needed for the improvement of robustness and resilience of the models over the 

harvest seasons. 

5. Conclusions 

The feasibility of using FT-NIR spectroscopy and Vis/NIR hyperspectral imaging for 

chestnut sorting is confirmed by the investigation conducted during this experiment. 

Compared to traditional floating system, the performance of the techniques tested in this 

study is slightly better; in fact, the total error rate (%) obtained using HSI is approximately 

four points lower than traditional method. The best result obtained by analysing the hilar scar 

side suggests that an on-line sorting device should have a pivoting chestnut conveyor located 

up-line. However, the design of a sorting device based on the methods presented here should 

need to balance the need for simplicity of the system with cost and performance compared to 

other competitors. Further, the obtained results provide the basis for a superior detection 

system in terms of sensitivity, selectivity, non-destructive analysis and automation. However, 

in addition to further investigation of the possible use of FT-NIR spectroscopy, more research 

will be needed to test the effectiveness of new discriminating analysis algorithms, filters and 

image analysis methods, including the emerging and promising Deep Learning techniques: 

i.e., (i) Deep Chemometrics for spectra analysis and (ii) Convolutional Neural Networks 

(CNN) for the development of classification models. 
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