sto lavoro si è inteso riassumere le più significative esperienze sperimentali condotte presso il DSA3, che hanno permesso di acquisire ulteriori informazioni in merito alla stabilizzazione, alla proliferazione e alla radicazione *in vitro*, nonché alla possibilità di allestire 'capsule' e 'semi sintetici' attraverso l'impiego di matrici nutritive e protettive di alginato di calcio, come strumento innovativo da offrire alla pratica

vivaistica per la gestione del materiale *vitro*-derivato. Lo studio di sostanze atte a ridurre o sostituire l'impiego della zeatina durante la fase di moltiplicazione oppure l'effetto di trattamenti mirati ad interrompere la dormienza delle gemme o a stimolare la rizogenesi in propaguli unipolari di olivo da sottoporre ad incapsulamento sono alcune tra le più interessanti linee di ricerca riportate nel presente lavoro.

Micropropagazione di Citrus clementina hort. ex Tanaka cv. 'Comune'

Girolamo Russo^{1*}, Marco Potenza²

¹ Già docente presso il Dipartimento Scienze Agro-Ambientali e Territoriali, Università di Bari

Parole chiavi: clementine, substrati, micropropagazione, conservazione germoplasma

Da piante di clementine "Comune" sono state asportate, nel mese di ottobre, le produzioni vegetative dell'anno (germogli di 10-15 cm). I germogli sono stati risciacquati e sezionati in porzioni uninodali delle dimensioni di circa 5-7 mm di lunghezza. Le colture sono state mantenute in camera di crescita ad una temperatura di 26 ± 2 °C con fotoperiodo di 16 ore di luce. Nella fase di stabilizzazione sono stati utilizzati tre tipi di substrato:

M0: MS a dose dimezzata con aggiunta di saccarosio (50 g/l), malto-agar (1 g/l), agar (8 g/l), acido ascorbico (0,5 g/l) e PPM® (Plant Preservative Misture, Plant Cell Tech. Laboratories, USA) (5 ml/l);

M1: MS a dose dimezzata addizionato con BAP (2,5 mg/l) con aggiunta di saccarosio (50 g/l), malto-agar (l g/l), agar (8 g/l), acido ascorbico (0,5 g/l) e PPM (5 ml/l);

MS a dose dimezzata addizionato con BAP (5 mg/l) con aggiunta di saccarosio (50 g/l), malto-agar (l g/l), agar (8 g/l), acido ascorbico (0,5 g/l) e PPM (5 m1/l). Dall'analisi dei risultati ottenuti, il substrato indicato come M1 è risultato il più idoneo per la fase di stabilizzazione *in vitro* del clementine "Comune".

D'analisi dei dati rilevati nel corso della sperimentazione, si può affermare che il substrato indicato come M1 è risultato il più idoneo per la fase di stabilizzazione *in vitro*. Ha permesso, infatti, di ottenere un maggior numero di espianti vitali (92%) con elevata ripresa vegetativa (89%), un maggior numero di germogli per espianto (1,6) ed una minima produzione di callo (2%).

² Agronomo libero professionista, Carbonara (BA)

^{*} girolamo.russo@agr.uniba.it