

Il programma di miglioramento genetico dell'olivo in corso presso il dipartimento SAAF dell'Università di Palermo: obiettivi e strategie.

Antonino Ioppolo¹, Tiziano Caruso¹, Silvia Fretto¹, Giacomo Belvisi¹, Irene Granata¹, Francesco Paolo Marra¹, Annalisa Marchese¹

¹Università degli Studi di Palermo (Dipartimento Scienze Agrarie Alimentari e Forestali), Viale delle Scienze ed. 4,90128 Palermo, Italia.

Il Dipartimento SAAF dell'Università di Palermo ha avviato un programma di selezione per identificare genotipi di olivo resistenti a stress biotici e abiotici, con particolare attenzione alle principali patologie diffuse in Sicilia e alla tolleranza alla carenza idrica. A tal fine sono stati realizzati incroci tra cultivar locali, come la "Cerasuola", e varietà internazionali come "Arbosana", oltre a processi di autofecondazione di "Koroneiki". L'obiettivo è promuovere la sostenibilità e la competitività dell'olivicoltura siciliana.

Fig. 1. Alberi di 12 anni della progenie 'Cerasuola' × 'Arbosana

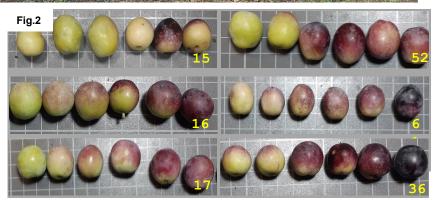


Fig. 2. Frutti di alcuni genotipi di 'Cerasuola' x 'Arbosana

Materiali & Metodi

- ☐ Misura altezza e diametro di entrambe le progenie 'Cerasuola'× 'Arbosana' -C×A (Fig. 1); 'Koroneiki' autofecondazione – K×K (Fig. 4).
- ☐ Analisi pomologiche frutti (Fig. 2 e 3; Tab. 1 e 2).
- ☐ Monitoraggio degli stadi fenologici.

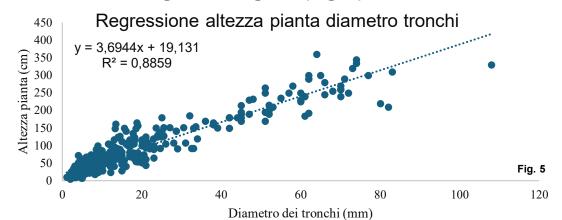
Fig. 3. Frutti di alcuni individui $K \times K$.

Fig. 4. Alberi di 12 anni della $\kappa \times \kappa$ segregante per individui aventi altezza paragonabile alla cv. madre 'Koroneiki' e individui «nani».

Entrambe le progenie presentano individui a taglia ridotta; la progenie K × K presenta anche individui «nani»

Tabella 1. Dati pomologici dei genotipi produttivi della progenie 'Cerasuola' × 'Arbosana'.

Genotipo	Peso Drupa(g)	Peso Nocciolo(g)	Peso Polpa(g)	Polpa/ Nocciolo	Lunghezza frutto (mm)	Diametro frutto (mm)	Lunghezza /Diametro
CxA17	5,13 a	0,58 abc	4,55 a	8,00 a	21,02 bc	18,95 ab	1,11 de
CxA54	4,85 a	0,59 ab	4,26 ab	7,28 ab	23,46 a	17,92 bc	1,31 a
CxA52	4,83 a	0,61 a	4,22 ab	7,02 abc	20,43 cd	19,16 a	1,07 def
CxA27	4,15 b	0,45 defg	$3,70\mathrm{bc}$	8,25 a	20,01 cde	17,47 cdef	1,15 cd
CxA16	4,12 b	0,49 def	3,64 c	7,67 ab	19,30 defg	18,24 abc	1,06 ef
CxA37	4,09 b	0,64 a	3,45 cd	5,57 de	19,31 defg	17,75 cd	1,09 def
Cerasuola	4,06 b	0,50 cde	3,56 c	7,28 ab	21,85 b	17,35 cde	1,27 ab
Arbosana	1,45 g	0,30 i	2,32 f	4.63 f	17.10 hi	12,9 <i>l</i>	1,32 a
CxA49	3,45 cd	0,51 bcd	2,93 de	5,85 cde	19,81 cdef	16,42 efg	1,21 bc
CxA31	3,11 de	0,49 def	2,62 ef	6,01 cde	18,21 gh	16,23 fgh	1,12 de
CxA35	3,01 de	0,41 fg	2,60 ef	6,64 bcd	17,11 hi	15,56 ghi	1,10 def
CxA58	2,75 ef	0,59 ab	2,16 f	3,72 g	16,13 ij	15,22 hij	1,06 def
CxA56	2,74 ef	0,41 fgh	2,33 f	5,75 de	15,70 jK	14,84 ij	1,06 ef
CxA29	2,66 ef	0,29 i	$2,37\mathrm{f}$	8,17 a	16,03 ij	15,11 hij	1,06 ef
CxA61	2,64 ef	0,42 efg	$2,22 \mathrm{f}$	5,34 e	18,54 fg	14,58 ijk	1,27 ab
CxA 19	2,33 f	0,37 ghi	1,96 g	5,38 e	14,53 K	14,23 jk	1,03 f
CxA39	2,19 f	0,32 hi	1,87 g	5,82 de	14,58 K	13,66 k	1,07 def



maggior parte degli individui progenie C x A sin dal secondo anno ha prodotto frutti, non presentando più caratteri giovanili. I dati pomologici dei genotipi produttivi sono riportati in Tabella 1.

Tabella 2. Dati pomologici dei genotipi produttivi della progenie 'Koroneiki' self.

Genotipo	Peso drupa(g)	Peso nocciolo(g)	Peso polpa(g)	Polpa/ Nocciolo	0	Diametro frutto (mm)	0
KxK 50a	3.24 a	0.59 a	2.65 a	4.54 ab	17.68 a	16.30 a	1.10 d
KxK 38	1.66 b	0.32 b	1.34 b	4.24 abc	16.45 b	12.42 b	1.32 c
Koroneiki	1.37 bc	0.24 c	1.13 b	4.77 a	16.87 ab	11.54 с	1.46 a
KxK 237	1.30 c	0.26 bc	1.04 bc	4.01 bc	14.55 с	11.12 с	1.31 c
KxK 19	1.28 c	0.27 bc	1.01 c	3.85 cd	15.98 b	11.19 с	1.42 ab
KxK 24	0.73 d	0.17 d	0.56 d	3.42 d	12.99 d	9.38 d	1.38 b

Nella progenie K × K, alcuni genotipi mostrano ancora caratteristiche giovanili e presentano fenotipi nani, mentre altri sono ormai in fase adulta; attualmente solo cinque individui producono frutti, i cui dati pomologici sono riportati nella Tabella 2. Si osserva una buona correlazione tra l'altezza della pianta e il diametro del tronco, che può essere considerato un marcatore morfologico del vigore (Fig. 5).

Nel 2024 tutti i genotipi produttivi sono stati moltiplicati in vaso e messi a dimora per valutare le performance agronomiche e produttive. Inoltre il Dipartimento SAAF negli ultimi anni ha svolto attività di impollinazione controllata per l'ottenimento di nuovi genotipi resistenti a vari stress biotici.