

Applicazione post-raccolta di Aureobasidium pullulans: effetti sul sistema antiossidante ed enzimatico dei frutti di pomodoro attaccati da Botrytis cinerea

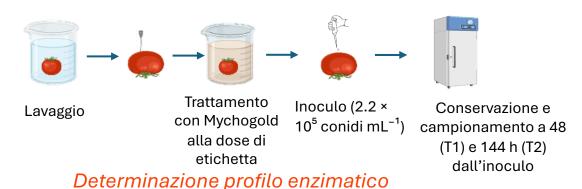
Agata Lizzio^{1,2,3*}, Valerio Battaglia², Milena Petriccione¹, Massimo Reverberi³, Ernesto Lahoz²

¹ CREA Consiglio per la ricerca in Agricoltura e l'analisi dell'Economia agraria, Olivicoltura, Frutticoltura e Agrumicoltura (CREA OFA), Via Torrino 3, 81100 Caserta, (CE), Italia

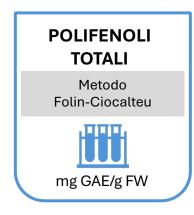
- ² CREA Consiglio per la ricerca in Agricoltura e l'analisi dell'Economia agraria, Cerealicoltura e colture industriali (CREA CI), Via Torrino 3, 81100 Caserta, (CE), Italia
- ³ Dipartimento di biologia ambientale, Università di Roma "Sapienza", Piazzale Aldo Moro, 5, 00185 Roma (RM), Italia

Introduzione

Il pomodoro è altamente suscettibile alle infezioni causate da *Botrytis cinerea*, agente eziologico della muffa grigia. Attualmente, il controllo si basa principalmente sull'impiego di fungicidi chimici, che presentano un rischio per l'ambiente e per la salute. Tuttavia, le evidenze scientifiche mostrano come gli agenti di biocontrollo possono offrire una strategia alternativa sostenibile ed efficace.

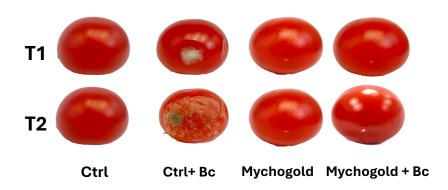


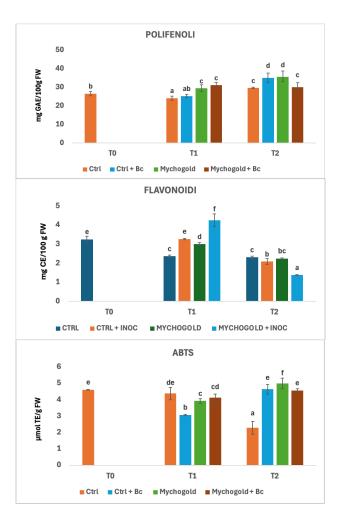
Obiettivo del lavoro

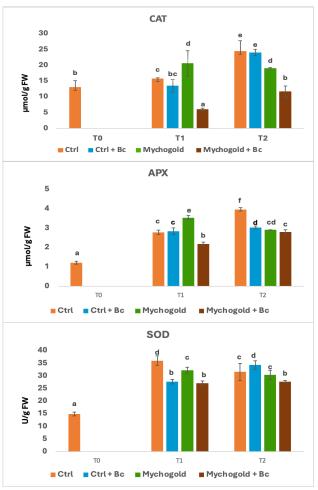

Questo studio valuta l'efficacia e l'effetto sul sistema antiossidante ed enzimatico del formulato commerciale Mychogold (NaBioTech), contenente *Aureobasidium pullulans*, su frutti di pomodoro inoculati con *B. cinerea* e conservati a 25°C per 6 giorni.

Piano sperimentale

Determinazione profilo antiossidante




ENZIMA	SUBSTRATO UTILIZZATO	λ (nm)	Reference
Catalasi (EC 1.11.1.6)	H ₂ O ₂	240	Pasquariello et al., (2015)
Superossido dismutasi (EC 1.15.1.1)	O ₂ -	560	Pasquariello et al., (2015)
Ascorbato perossidasi (EC 1.11.1.11)	Acido ascorbico	290	Adiletta et al., (2018)
Polifenolossidasi (EC. 1.10.3.2)	Catecolo	398	Petriccione et al., (2015)



RISULTATI

Il trattamento con Mychogold ha ridotto lo sviluppo di Botrytis cinerea (76,11% dopo 144 ore), determinando un incremento del contenuto di polifenoli e una maggiore attività antiossidante dopo 144 ore (T2) dall'inoculo con una riduzione della polifenolossidasi. Il trattamento con Mychogold determina un aumento dell'attività della CAT e dell'APX nelle prime fasi dell'infezione (T1). L'attività della SOD inizialmente elevata, è risultata ridotta a seguito del trattamento con Mychogold (T1) e in risposta all'infezione nei campioni trattati con BCA (T2).

CONCLUSIONI

I risultati ottenuti evidenziano il potenziale del formulato commerciale Mychogold nel contrastare lo sviluppo di B. cinerea e nel modulare la risposta antiossidante del frutto, rappresentando una strategia sostenibile e promettente per il contenimento della muffa grigia.

