

Giornate Tecniche Nazionali sul Nocciolo Innovazioni per una Corilicoltura Sostenibile

23-24 Ottobre 2025 Campus UNISA, Fisciano (SA)

APPLICAZIONI DI AGRICOLTURA DI PRECISIONE NELLA GESTIONE AGRONOMICA DEL NOCCIOLETO

Gessica ALTIERI

Dipartimento di Farmacia (DIFARMA)
Università degli Studi di Salerno

COS' E' L' AGRICOLTURA DI PRECISIONE

«Fare la cosa giusta, al momento giusto, al posto giusto»

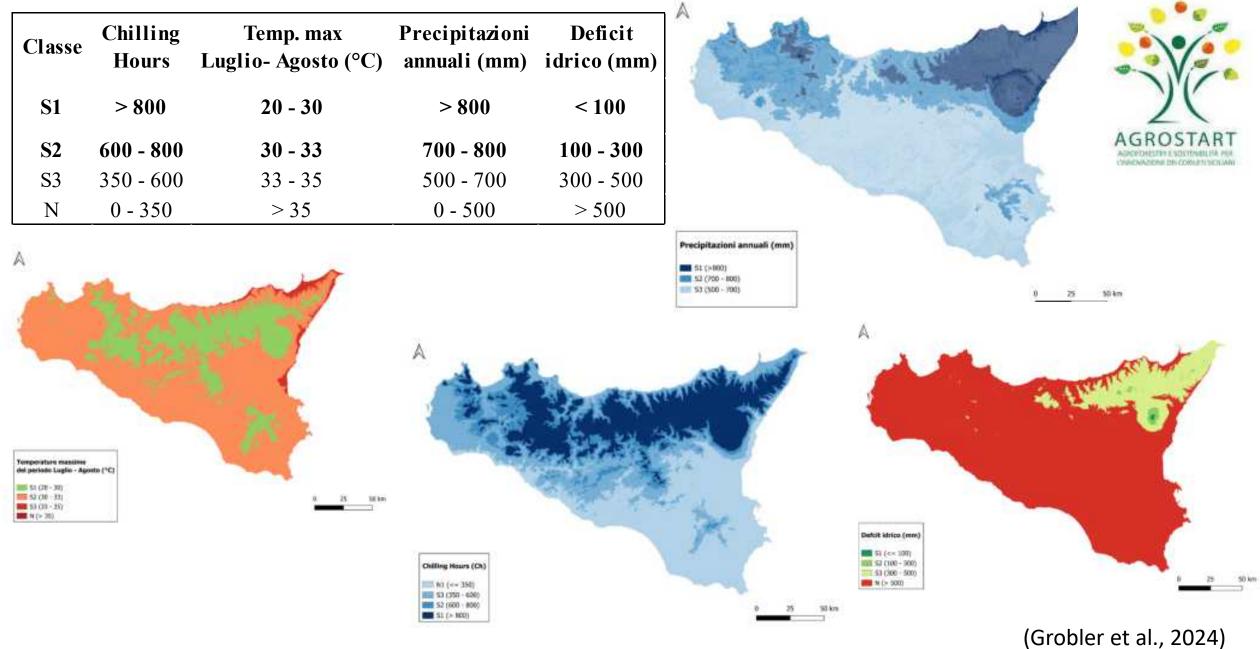
Tenere conto della variabilità nel tempo e nello spazio dei fattori che influiscono nel processo agricolo produttivo, con il fine di migliorare l'efficienza degli input nella gestione

Usare meno risorse per ottenere lo stesso risultato - ottenere un risultato migliore a parità di risorse

STRUMENTI

- ➤ GPS e GIS: sistemi di posizionamento globale e sistemi informativi geografici per la mappatura
- > Strumenti mappatura sottosuolo
- > Droni e immagini satellitari (mappatura soprassuolo)
- > Sensori metereologici, irrigazione
- ➤ Macchine agricole intelligenti per semina, trattamenti
- > Software per i relativi strumenti e software di gestione agricola (programmi e applicazioni)

Stato dell'arte Nocciolo



Idoneità territorio/areale alla coltivazione	- Realizzazione carte di attitudine
Variabilità spaziale	- Mappatura sottosuolo (ECa) - Mappatura soprassuolo (indici di vegetazione)
	- Misura della proiezione della canopy al suolo (PGA)
Struttura pianta/chioma	- Stima del volume della chioma
	- Valutazione della biomassa con laser scanner terrestre (TLS)
	- Rilevamento e trattamento polloni
Infestazioni acaro e oidio	- Rilevamento precoce di gemme infestate da acaro (galle)
	- Rilevamento di oidio su foglie di nocciolo
Monitoraggio termico-	Monitoraggio stato termico per pilotare irrigazione mediante:
idrico	- termometri a infrarossi a basso costo
	- drone con sensore termico
Erbe infestanti	- Esplorazione della corrente elettrica

Idoneità territorio/areale alla coltivazione: Carte di attitudine

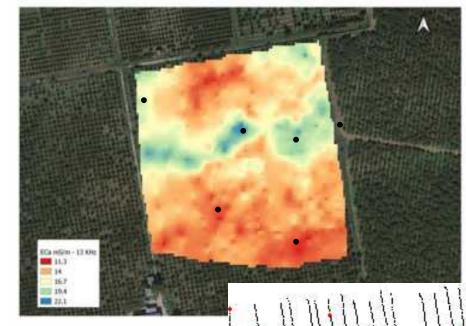
Valutazione dell'attitudine consiste in un processo di confronto tra le risorse offerte dal territorio e i fabbisogni richiesti dai tipi di utilizzazione che si vogliono praticare. Il confronto dei due permetterà di valutare e classificare il grado di «capacità di sostenere» specifici usi ovvero la misura in cui le risorse disponibili soddisfano i fabbisogni richiesti da un determinato uso.

Carta di attitudine pedologica, fisica e climatica

Gessica Altieri - galtieri@unisa.it

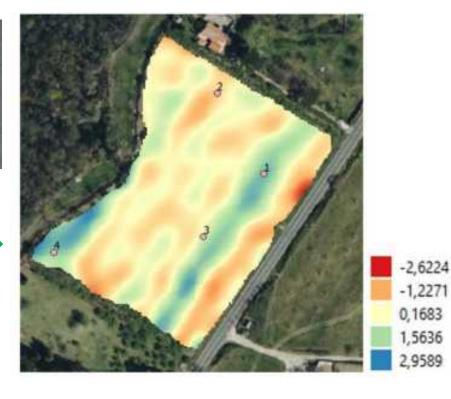
23/10/2025

Variabilità spazio-temporale: Mappatura sottosuolo


sensori ad induzione elettromagnetica (EMI) che misurano la conducibilità elettrica apparente del suolo (ECa) = zone omogenee

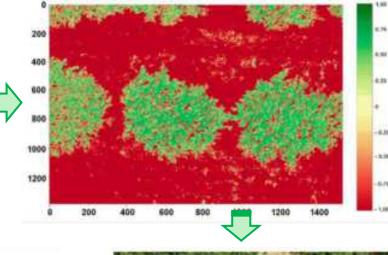
sistema con cui si individuano le zone dell'appezzamento con caratteristiche simili = zone omogenee

Estrazione dei punti di campionamento software ESAP-RSSD


Variabilità spazio-temporale: Mappatura sottosuolo

(Pacchiarelli, 2023)

Uso di sensori del suolo prossimali (EMI) in noccioleto per monitorare la distribuzione dell'acqua di irrigazione e la possibilità di rilevare anomalie lungo un sistema di sub-irrigazione (50-100 cm)


Distribuzione ECa

- •Mappatura pre- e post-irrigazione ha mostrato variazioni lineari nell' ECa, soprattutto nel range **50–100 cm**, dove si trovano i tubi interrati.
- •Le variazioni massime di ECa postirrigazione erano contenute(~4 mS/m), non compatibili con rotture o perdite evidenti nel sistema.

Le analisi hanno evidenziato
eterogeneità nella tessitura del
suolo nel noccioleto confermando la
correlazione tra tessitura e
conducibilità.

Variabilità spazio-temporale: Mappatura soprassuolo

Caratterizzazione mediante indici di vegetazione usando immagini UAV ad alta risoluzione

Indici testati come predittori stato sanitario pianta:

NDVI=NIR-RED/NIR+RED

GNDVI=NIR-GREEN/NIR+GREEN

GCI=(NIR/GREEN)-1

NDREI=NIR-RED EDGE/NIR+REDEDGE

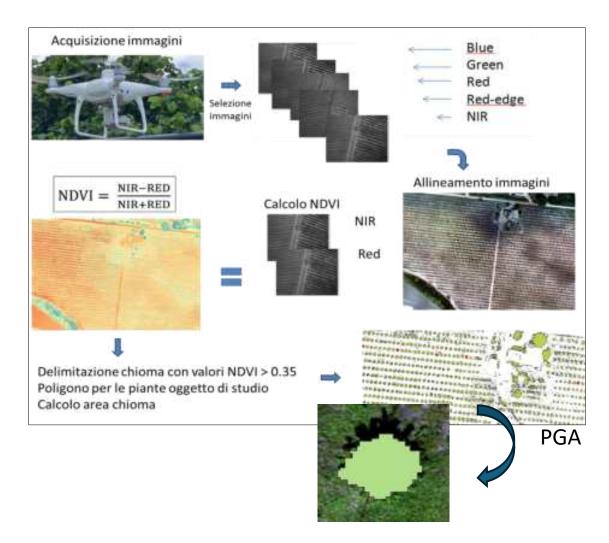
RECI=(NIR/RED EDGE)-1

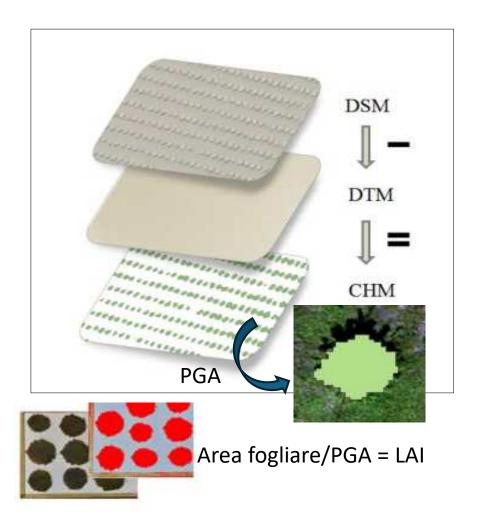
NRI=GREEN-RED/GREEN+RED

GI=GREEN/RED

TCARI=3*(RED EDGE-RED) (0,2*(RED-GREEN)/RED EDGE-RED)

SAVI=(1+*L*) *N/IR*-*RED*-/*NIR*+*RED*+*L*

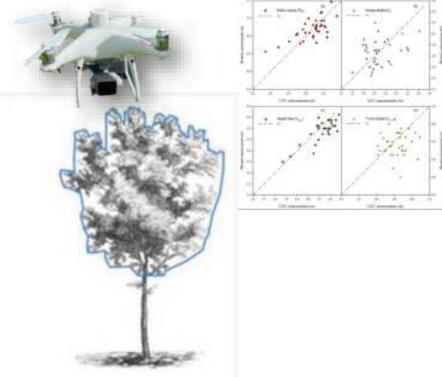



Accuratezza del modello di circa il 65%, dimostrando che tali **(5) indici possono essere utilizzati per dedurre le condizioni fisio-patologiche** con il 13% di falsi negativi

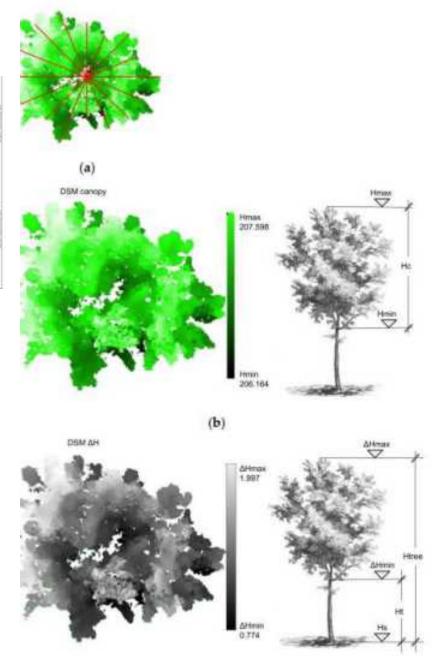
Gessica Altieri - galtieri@unisa.it

Struttura pianta/chioma Proiezione della canopy al suolo (Altieri et al., 2022)

Procedura di misura della proiezione della canopy al suolo in ambiente GIS


Struttura pianta/chioma Stima del volume della chioma (Vinci et al., 2023)

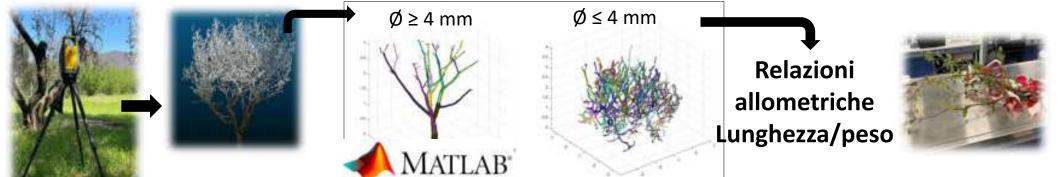
Vs

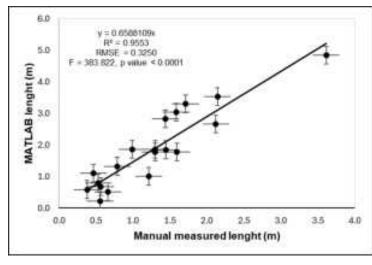


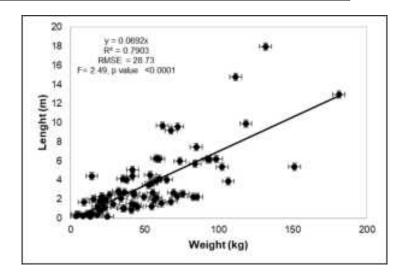
Volume chioma stimato simulando la misura manuale al volume di un cilindro:

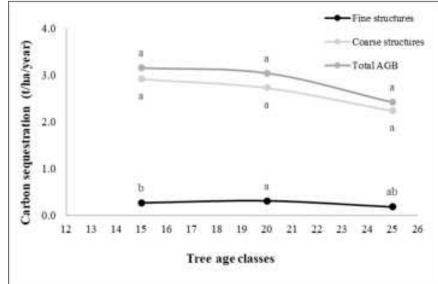
$$V = \pi^* R^2_{canopy} * H_{canopy}$$

Volume chioma stimato mediante misure sulla chioma da DSM in ambiente GIS



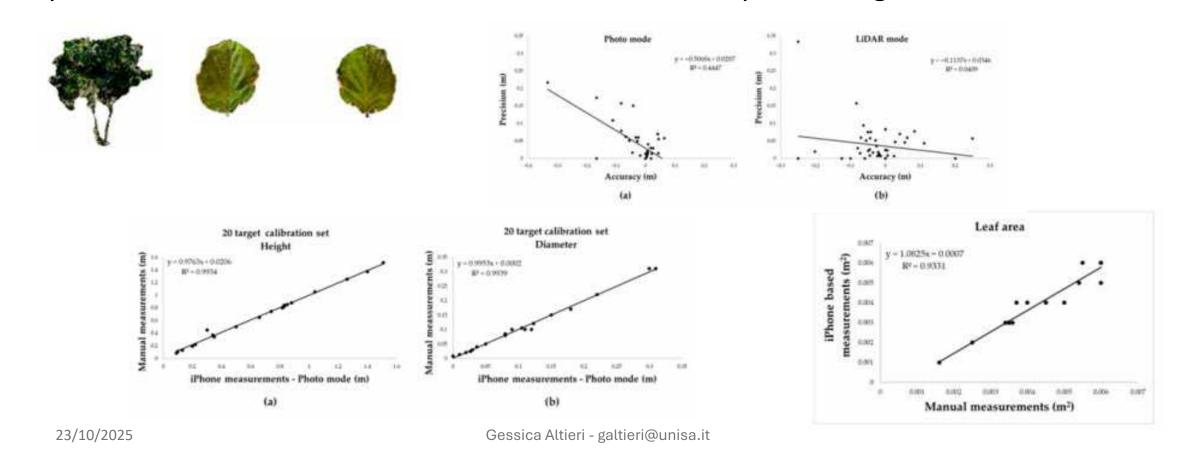

Struttura pianta/chioma Stima della biomassa di piante di nocciolo mediante laser scanner terrestre (TLS)


(Grobler et al., 2025 – in sottomissione)

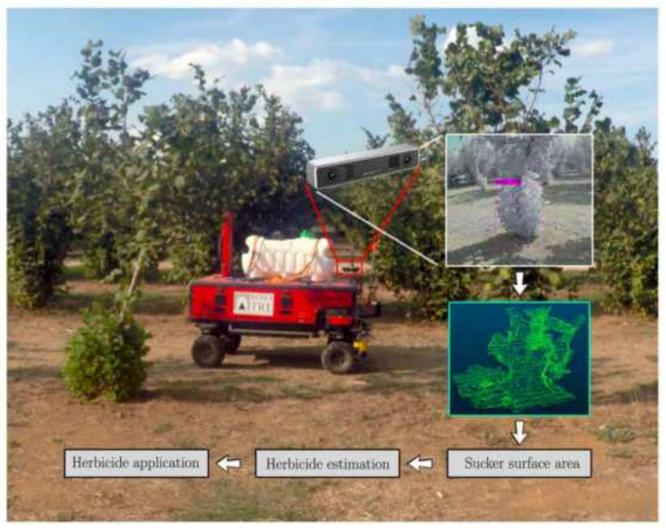

Trimble X7 3D-scanner

Sviluppo e applicazione di una metodologia innovativa per la stima non distruttiva della biomassa epigea di piante di nocciolo di diversa età

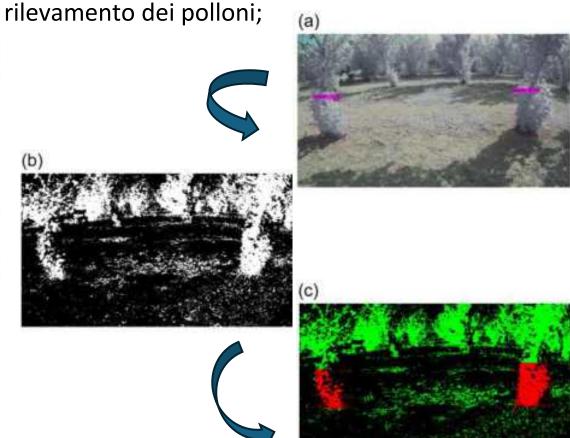
23/10/2025


Gessica Altieri - galtieri@unisa.it

Struttura pianta/chioma


Fotogrammetria e scansione LiDAR con iPhone 13Pro: applicazione in noccioleto

(Elèna Grobler and Giuseppe Celano, 2025)


iPhone 13 Pro dotato di un sensore LiDAR integrato e di una fotocamera RGB, per la scansione 3D di altezza, diametro del fusto e superficie fogliare

Controllo polloni Rilevamento di polloni (Lippi et al., 2024)

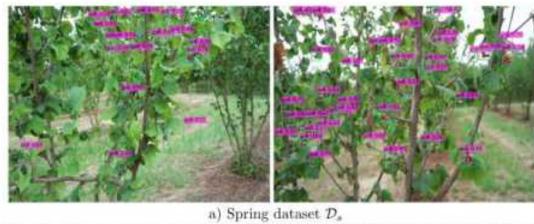
Algoritmo di rilievo e ricostruzione dei polloni e loro superficie, in base a questa, viene stimata la quantità di erbicida necessaria (err. medio del 9%). Precisione media del 79,4% del sistema di rilevamente dei polloni.

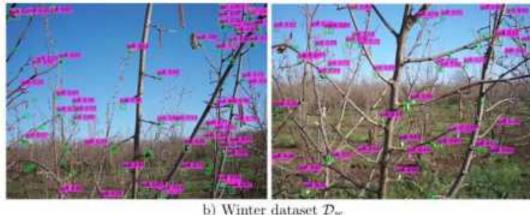
Rilevamento di polloni (Lippi et al., 2024)

Robot che ispeziona gli alberi rileva i polloni, segmentazione e ricostruzione (a).

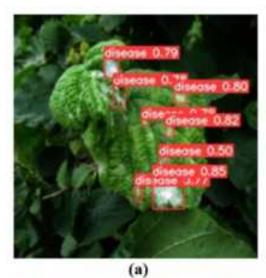
Polloni prima del trattamento (a), dopo due settimane (b) e dopo 1 mese (c).

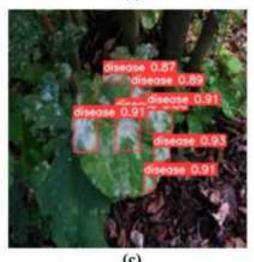
Dettaglio del polone ricostruito e della superficie della chioma nonché la quantità di soluzione erbicida da applicare (b).

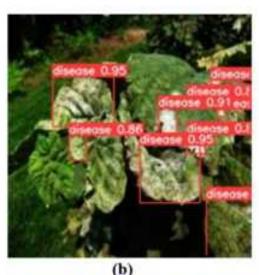

Rilevamento precoce di gemme infestate da acaro (galle) (Lippi et al., 2022)


Il sistema si basa su un sistema di monitoraggio guidato (algoritmo YOLO)

Il sistema è in grado di rilevare le infestazioni di parassiti con una precisione media dell'86,7%.




approccio efficace di gestione integrata dei parassiti, promuovendo un cambiamento verso una gestione del frutteto più sostenibile e rispettoso dell'ambiente.



Rilevamento di oidio su foglie di nocciolo (Boyar and Yıldız, 2022)

Riconoscimento foglie sane e superficie di foglie con manifestazione di oidio modello di deep learning YOLOv5

Il dataset composto da 424 immagini, di cui 224 di foglie malate e 200 di foglie sane

Il modello YOLOv5 ha raggiunto un tasso di accuratezza del 90% nel rilevamento delle foglie malate e ha mantenuto un'accuratezza dell'85% per le immagini con sfondi complessi

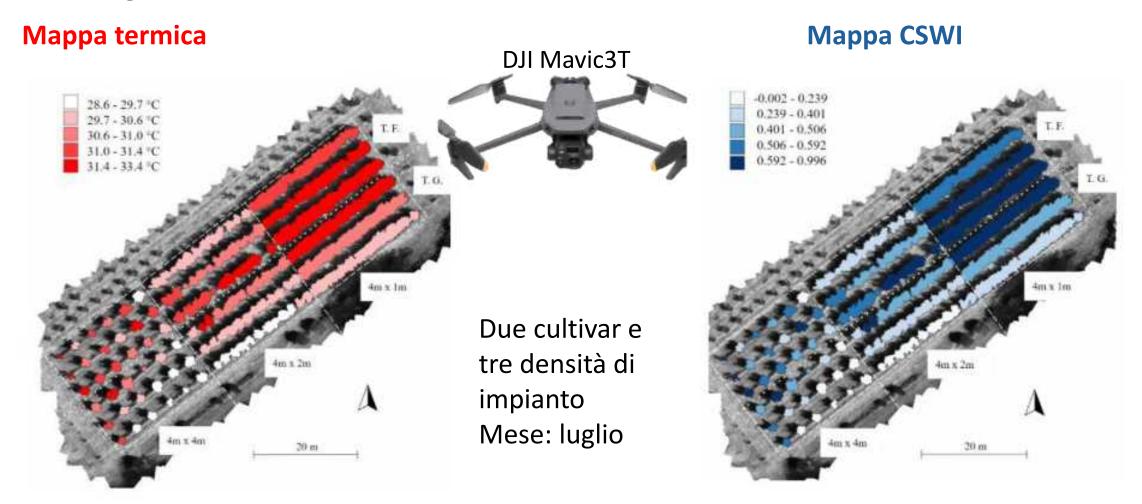
Monitoraggio termico-idrico

Monitoraggio stato termico utilizzando termometri a infrarossi a basso costo

(McCauley et al., 2024)

9 stazioni meteorologiche a basso costo e open-source (LOCOS) con termometro a infrarossi, microcontrollore Arduino per la registrazione dei dati

CWSI (Crop Water Stress Index) *Vs*


potenziale idrico dello stelo e misure di scambi gassosi

Quando il potenziale idrico del fusto è inferiore a -6 bar, il CWSI rimane inferiore a 0,2 indicando un basso stress della pianta, con tassi di conduttanza fogliare corrispondenti compresi tra 0,1 e 0,4 mol m² s⁻¹

Indicazione per gli agricoltori per il monitoraggio in azienda e il supporto alle decisioni

Monitoraggio termico-idrico

Monitoraggio stato termico per pilotare l'irrigazione mediante UAV con sensore termico integrato (Vinci et al., 2024)

Erbe infestanti

Esplorazione dell'uso della corrente elettrica per il controllo delle infestanti nelle nocciole (Moretti et al., 2023)

l'utilizzo della **corrente elettrica ad alta tensione** come metodo non-chimico per il controllo delle infestanti all'interno di noccioleti (*Corylus avellana* L.) negli Stati Uniti, con l'obiettivo di fornire un'alternativa contro le infestanti resistenti agli erbicidi e ridurre l'uso di prodotti chimici

Risultati:

- Biomassa infestante: riduzione fino al 93%
- **Produzione infiorescenze infestanti**: –93% dopo 56 giorni
- Miglior efficacia con:
 - -Alta tensione (9 kV)
 - -Velocità lenta (< 3,2 km/h)
- Ricrescita presente → necessarie applicazioni ripetute
- Nessun danno alle piante di nocciolo
- A Rischio incendio con vegetazione secca

LIMITI DI APPLICAZIONE

- Dimensioni ridotte dell'azienda agricola
- Eterogeneità dei sistemi colturali
- Costi elevati per ottenere dati altamente specifici
- Complessità della tecnologia che richiede specifiche ed elevate competenze
- Capacità limitata di integrare informazioni provenienti da fonti diverse con varie risoluzioni e intensità
- Poca inclinazione verso il cambiamento/innovazione = abbiamo sempre fatto così = rinnovo generazionale

Bibliografia

- Altieri, G., Maffia, A., Pastore, V., Amato, M., & Celano, G. (2022). Use of high-resolution multispectral UAVs to calculate projected ground area in Corylus avellana L. tree orchard. Sensors, 22(19), 7103;
- ➤ Boyar, T., & Yıldız, K. (2022). Powdery mildew detection in hazelnut with deep learning. Hittite Journal of Science and Engineering, 9(3), 159-166;
- ➤ Di Lena, B., Curci, G., Vergni, L., & Farinelli, D. (2022). Climatic suitability of different areas in Abruzzo, Central Italy, for the cultivation of hazelnut. Horticulturae, 8(7), 580.
- ➤ Grobler, E., Altieri, G., De Nigris, C., Curcio, D., Maffia, A., Gioia, D., Minervino Amodio, A., & Celano, G. (2025). Assessment of above-ground biomass of individual hazelnut trees by Terrestrial Laser Scanning and MATLAB® analysis In Submission
- ➤ Grobler Elèna, and Giuseppe Celano. "Photogrammetric and LiDAR Scanning with iPhone 13 Pro: Accuracy, Precision and Field Application on Hazelnut Trees." Sensors 25.18 (2025): 5629.
- ➤ Lippi, M., Carpio, R. F., Contarini, M., Speranza, S., & Gasparri, A. (2022). A data-driven monitoring system for the early pest detection in the precision agriculture of hazelnut orchards. IFAC-PapersOnLine, 55(32), 42-47;
- Lippi, M., Santilli, M., Carpio, R. F., Maiolini, J., Garone, E., Cristofori, V., & Gasparri, A. (2024). An autonomous spraying robot architecture for sucker management in large-scale hazelnut

Bibliografia

- ➤ Morisio, M., Noris, E., Pagliarani, C., Pavone, S., Moine, A., Doumet, J., & Ardito, L. (2025). Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices. Sensors, 25(1), 288.
- McCauley, D., Keller, S., Transue, K., Wiman, N., & Nackley, L. (2024). A Crop Water Stress Index for Hazelnuts Using Low-Cost Infrared Thermometers. Sensors, 24(23), 7764;
- ➤ Moretti, M. L., Wirth, J., & Pedroso, R. M. (2022, September). Exploring electric current for weed control in hazelnuts. In X International Congress on Hazelnut 1379 (pp. 491-494).
- ➤ Pacchiarelli A., 2023. Validation of new sustainable intensification models of hazelnut orchard. PhD thesis, University of Tuscia, 2023.
- ➤ Vinci, A., Brigante, R., Traini, C., & Farinelli, D. (2023). Geometrical characterization of hazelnut trees in an intensive orchard by an unmanned aerial vehicle (UAV) for precision agriculture applications. Remote Sensing, 15(2), 541;
- ➤ Vinci, A., Brigante, R., Traini, C., Facchin, S. L., Portarena, S., Sánchez-Piñero, M., & Farinelli, D. (2024). Monitoring of Water Requirement Using Thermal Unmanned Aerial Vehicle (UAV) on Intensive Hazelnut Orchard. Sensors and Electronic Instrumentation Advances, 70.

Sitografia

➤ Relazione progetto MODELLI CIRCOLARI:

https://sites.google.com/unisa.it/progetto-modelli-circolari/home?authuser=0

➤ Mappe di attitudine Regione Sicilia (Progetto AGROSTART):

https://www.researchgate.net/publication/393630860 Mappe di attitudine per la coltivazi one del nocciolo nella Regione Sicilia#fullTextFileContent

GRAZIE PER L'ATTENZIONE

Gessica Altieri - galtieri@unisa.it